Abnormal event detection in crowded scenes via bag-of-atomic-events-based topic model

نویسندگان

  • Xing HU
  • Shiqiang HU
  • Lingkun LUO
  • Guoxiang LI
چکیده

In this paper, we propose a novel framework for abnormal event detection in crowded scenes. A new concept of atomic event is introduced into this framework, which is the basic component of video events. Different from previous bag-of-words (BoW) modeling-based methods that represent feature descriptors using only one code word, a feature descriptor is represented using a few more atomic events in bag-of-atomic-events (BoAE) modeling. Consequently, the approximation error is reduced by using the obtained BoAE representation. In the context of abnormal event detection, BoAE representation is more suitable to describe abnormal events than BoW representation, because the abnormal event may not correspond to any code word in BoW modeling. Fast latent Dirichlet allocation is adopted to learn a model of normal events, as well as classify the testing event with low likelihood under the learned model. Our proposed framework is robust, computationally efficient, and highly accurate. We validate these advantages by conducting extensive experiments on several challenging datasets. Qualitative and quantitative results show the promising performance compared with other state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Instance Dictionary Learning for Detecting Abnormal Events in Surveillance Videos

In this paper, a novel method termed Multi-Instance Dictionary Learning (MIDL) is presented for detecting abnormal events in crowded video scenes. With respect to multi-instance learning, each event (video clip) in videos is modeled as a bag containing several sub-events (local observations); while each sub-event is regarded as an instance. The MIDL jointly learns a dictionary for sparse repres...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Detecting Abnormal Behaviors in Crowded Scenes

Situational awareness is a basic function of the human visual system, which is attracting a lot of research attention in machine vision and related research communities. There is an increasing demand for smarter video surveillance of public and private space using intelligent vision systems which can distinguish what is semantically meaningful to the human observer as ‘normal’ and ‘abnormal’ be...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016